Size and ability do matter! Influence of acidity and pore size on the synthesis of hindered halogenated meso-phenyl porphyrins catalysed by porous solid oxides.

نویسندگان

  • Mónica Silva
  • Auguste Fernandes
  • Suse S Bebiano
  • Mário J F Calvete
  • M Filipa Ribeiro
  • Hugh D Burrows
  • Mariette M Pereira
چکیده

The rationalisation of the influence of acidity and pore size of several solid oxides so that they selectively act as supports for preparation of encapsulated porphyrin hybrid materials or as catalysts for synthesis of porphyrins in solution is discussed. Encapsulated porphyrin yields are dependent on both the acidity and the material pore size, Al-MCM-41 being the best fitting solid, with Lewis acidity of 120 μmol Py per g and a pore size 30 Å. On the other hand, when the goal is the synthesis of hindered mesoarylporphyrins in solution, the best solid porous catalyst is NaY, with Lewis acidity of 510 μmol Py per g and a pore size 14 Å. This method provides an appealing efficient, reusable and scalable catalyst alternative for one-pot synthesis of meso-arylporphyrins in high yields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Optimum Routine for Surface Modification of Ceramic Supports to Facilitate Deposition of Defect-Free Overlaying Micro and Meso (Nano) Porous Membrane

In this work, a simple and effective way to modify the support surface is developed and a nanostructure ceramic support to facilitate deposition of a defect-free overlying micro and meso (nano) porous membrane is obtained. To achieve high performance nanocomposite membranes, average pore size of outer surface of support was reduced by dip-coating in submicron and nano α-alumina slurries. In...

متن کامل

Chemical Modification of Activated Carbon and Its Application for Solid Phase Extraction of Copper(II) and Iron(III) Ions

Powder activated carbon surface (AC) was grinded and modified and altered procedure thorough a facile and easy chemical reaction to appearance of 2-((3silylpropylimino)1-methyl) phenol (AC- (SPIMP)). Subsequently, this novel sorbent efficiently applied for the extraction and preconcentration of some metal ions from real samples. Preliminary the influences of variables such as pH, amounts of rea...

متن کامل

Synthesis of porous CdO sheet-like nanostructure based on soft template model and its application in dye pollutants adsorption

In this work, the synthesis of porous structure of cadmium oxide with multilayered sheet-like morphology in nano-meter size using adipic acid as soft template by solvothermal/thermal decomposition process is reported. Chemical analyses exhibited that the formation of porous sheet-like structure is originated from bidentate coordination mode of adipate units to Cd-center. It was found that the c...

متن کامل

Immobilization of Glucose oxidase on Meso-porous Glass-ceramic with the Skeleton of CaTi4(PO¬4)6

Microporous glass ceramic with skeleton of CaTi4(PO¬4)6 with average pore size of 12.7 nm has been synthesized and used as a carrier of glucose oxidase. The glass ceramic was prepared by controlled heat treatment of glass samples, which causes the phase separation in their structure and creates CaTi4(PO¬4)6 and β-Ca3(PO4)2 phases. The β-Ca3(PO4)2 phase was dissolved by soaking the glass ceramic...

متن کامل

Synthesis of porous CdO sheet-like nanostructure based on soft template model and its application in dye pollutants adsorption

In this work, the synthesis of porous structure of cadmium oxide with multilayered sheet-like morphology in nano-meter size using adipic acid as soft template by solvothermal/thermal decomposition process is reported. Chemical analyses exhibited that the formation of porous sheet-like structure is originated from bidentate coordination mode of adipate units to Cd-center. It was found that the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical communications

دوره 50 50  شماره 

صفحات  -

تاریخ انتشار 2014